Consider a RLC circuit in which resistor, inductor and capacitor are connected in parallel to each other.
This parallel combination is supplied by voltage supply, VS. This parallel RLC circuit is exactly opposite to series RLC circuit. In series RLC circuit, the current flowing through all the three components i.e the resistor, inductor and capacitor remains the same, but in parallel circuit, the voltage across each element remains the same and the current gets divided in each component depending upon the impedance of each component. That is why parallel RLC circuit is said to have dual relationship with series RLC circuit.
The total current, IS drawn from the supply is equal to the vector sum of the resistive, inductive and capacitive current, not the mathematic sum of the three individual branch currents, as the current flowing in resistor, inductor and capacitor are not in same phase with each other; so they cannot be added arithmetically.
Apply Kirchhoff's current law, which states that the sum of currents entering a junction or node, is equal to the sum of current leaving that node we get,
For drawing the phasor diagram of parallel RLC circuit, voltage is taken as reference because voltage across each element remains the same and all the other currents i.e IR, IC, IL are drawn relative to this voltage vector. We know that in case of resistor, voltage and current are in same phase; so draw current vector IR in same phase and direction to voltage. In case of capacitor, current leads the voltage by 90° so, draw IC vector leading voltage vector, V by 90°. For inductor, current vector IL lags voltage by 90° so draw IL lagging voltage vector, V by 90°. Now draw the resultant of IR, IC, IL i.e current IS at a phase angle difference of θ with respect to voltage vector, V. Simplifying the phasor diagram, we get a simplified phasor diagram on right hand side. On this phasor diagram, we can easily apply Pythagoras's theorem and we get,
The total current, IS drawn from the supply is equal to the vector sum of the resistive, inductive and capacitive current, not the mathematic sum of the three individual branch currents, as the current flowing in resistor, inductor and capacitor are not in same phase with each other; so they cannot be added arithmetically.
Apply Kirchhoff's current law, which states that the sum of currents entering a junction or node, is equal to the sum of current leaving that node we get,
Phasor Diagram of Parallel RLC Circuit
Let V is the supply voltage. IS is the total source current. IR is the current flowing through the resistor. IC is the current flowing through the capacitor. IL is the current flowing through the inductor. θ is the phase angle difference between supply voltage and current.For drawing the phasor diagram of parallel RLC circuit, voltage is taken as reference because voltage across each element remains the same and all the other currents i.e IR, IC, IL are drawn relative to this voltage vector. We know that in case of resistor, voltage and current are in same phase; so draw current vector IR in same phase and direction to voltage. In case of capacitor, current leads the voltage by 90° so, draw IC vector leading voltage vector, V by 90°. For inductor, current vector IL lags voltage by 90° so draw IL lagging voltage vector, V by 90°. Now draw the resultant of IR, IC, IL i.e current IS at a phase angle difference of θ with respect to voltage vector, V. Simplifying the phasor diagram, we get a simplified phasor diagram on right hand side. On this phasor diagram, we can easily apply Pythagoras's theorem and we get,
0 comments:
Post a Comment