Consider a simple RL circuit in which resistor, R and inductor, L are connected in series with a voltage supply of V volts. Let us think the current flowing in the circuit is I (amp) and current through resistor and inductor is IR and IL respectively. Since both resistance and inductor are connected in series, so the current in both the elements and the circuit remains the same. i.e IR = IL = I. Let VR and Vl be the voltage drop across resistor and inductor. Applying Kirchhoff voltage law ( i.e sum of voltage drop must be equal to apply voltage) to this circuit we get,
Step 3. Calculate the total phase angle for the circuit θ = tan - 1(XL/ R).
Step 4. Use Ohm’s Law and find the value of the total current: I = V / Z amp.
Step 5. Calculate the voltages across resistor R and inductor L by using Ohm’s Law . Since the resistor and the inductor are connected in series, so current in them remains the same.
Phasor Diagram for RL Circuit
Before drawing the phasor diagram of series RL circuit , one should know the relationship between voltage and current in case of resistor and inductor.- Resistor In case of resistor, the voltage and the current are in same phase or we can say that the phase angle difference between voltage and current is zero.
- Inductor In inductor, the voltage and the current are not in phase. The voltage leads that of current by 90° or in other words, voltage attains its maximum and zero value 90° before the current attains it.
- RL Circuit For drawing the phasor diagram of series RL circuit ; follow the following steps:
CONCLUSION : In case of pure resistive circuit, the phase angle between voltage and current is zero and in case of pure inductive circuit, phase angle is 90° but when we combine both resistance and inductor, the phase angle of a series RL circuit is between 0° to 90°.
Impedance of Series RL Circuit
The impedance of series RL circuit opposes the flow of alternating current. The impedance of series RL Circuit is nothing but the combine effect of resistance (R) and inductive reactance (XL) of the circuit as a whole. The impedance Z in ohms is given by, Z = (R2 + XL2)0.5 and from right angle triangle, phase angle θ = tan - 1(XL/R).Series RL Circuit Analysis
In series RL circuit , the values of frequency f, voltage V, resistance R and Inductance L are known and there is no instrument for directly measuring the value of inductive reactance and impedance; so, for complete analysis of series RL circuit, follow these simple steps:Step 1.Since the value of frequency and inductor are known, so firstly calculate the value of inductive reactance XL: XL = 2πfL ohms. Step 2. From the value of XL and R, calculate the total impedance of the circuit which is given byPower in RL Circuit
In series RL circuit , some energy is dissipated by the resistor and some energy is alternately stored and returned by the inductor-- The instantaneous power deliver by voltage source V is P = VI (watts).
- Power dissipated by the resistor in the form of heat, P = I2R (watts).
- The rate at which energy is stored in inductor,
Variation of Impedance and Phase Angle with Frequency
The above diagram shows the impedance triangle. The base of this impedance triangle represents resistance. The resistance is independent of frequency; so, if frequency increases or decreases, resistance remains constant. The formula for inductive reactance is XL = 2πfL. So, if frequency increases, inductive reactance XL also increases and if inductive reactance increases, total impedance of circuit also increases and this leads to variation in phase angle θ with frequency. So, in series RL circuit if frequency increases,- inductive reactance also increases as it is directly proportional to frequency.
- total impedance Z increases.
- phase angle θ increases.
- resistance remains constant.
0 comments:
Post a Comment